
Chapter 26. Sample 
Programming Exam – 

Topic #3 

In This Chapter 

In the present chapter we will review some sample exam problems and 

suggest solutions for them. While solving the problems we will stick to the 

advices given in the chapter "Methodology of Problem Solving". 

Problem 1: Spiral Matrix 

With a given number N (input from the keyboard) generate and print a 

square matrix containing the numbers from 0 to N2-1, located as a 

spiral beginning from the center of the matrix and moving clockwise starting 

downwards (look at the examples). 

Sample output for N=3 and N=4: 

 

Start Thinking on the Problem 

It’s obvious from the requirement that we are given an algorithmic 

problem. Contriving the appropriate algorithm for filling up the square matrix 

cells in the required way is the main part of the solution to the problem. We 

will demonstrate to the reader the typical reasoning needed for solving this 

particular problem. 

Inventing an Idea for the Solution 

The next step is to think up the idea for the algorithm, which we will 

implement. We must fill the matrix with the numbers from 0 to N2-1 and we 

may immediately notice that this could be made by a loop, which puts one 

of the numbers in the supposed cell of the matrix at each iteration. We 

first put 0 at its place, then put 1 at its place, then put 2, and so on until we 

finish with putting N2-1 at its place. 



1072  Fundamentals of Computer Programming with C# 

Let’s suppose we know the starting position – the one we have to put the 

first number on (the zero). That’s how the problem is reduced to finding a 

method for determining each of the next positions, which we must put a 

number at – this is our primary subtask. 

We try to find an approach for determining the next to the current 

position: we search a strict regularity for changing the indices during the 

traversal of the cells. It looks like the directions of the numbers are changed 

from time to time, right? First the direction if down, then the direction is 

changed to left, later to up, then to right then again to down. Changing of the 

directions is always clockwise and the initial direction is always 

downwards. 

If we define an integer variable direction that holds the current moving 

direction, it will take sequentially the values 0 (down), 1 (left), 2 (up), 3 

(right) and then again л, м, 2, … Looking at the problem examples (for N=о 
and N=4) we can conclude that the direction stays down for some time, then 

changes to left, stays some time, then changes to up, stays some time, etc. 

We can assume that with changing the moving direction we can increase the 

value of direction by one and take its remainder of division by 4. Thus the 

next direction after 3 (right) will be 0 (down). 

The next step is to determine when the moving direction changes: what is 

the number of moves in each direction. This may take some time. We can 

take a sheet of paper and test few hypotheses we might have. 

From the two examples we can see that the number of moves in the 
consequent directions does form special sequences: for N=3  1, 1, 2, 2, 2 

and for N=4  1, 1, 2, 2, 3, 3, 3. This means that for N=3 we move 1 cell 

down, then 1 cell left, then 2 cells up, then 2 cells right and finally 2 down. 

For N=4, the process is the same. We found an interesting dependency 

which can evolve into an algorithm for filling the spiral matrix. 

If we write down a bigger matrix of the same type on a sheet of paper, we will 

see that the sequence of the changes of direction follows the same 

pattern: the numbers increases by 1 at an interval of two and the last number 

does not increase. 

Seems like we have an idea to solve the problem: start from the middle of 

the matrix and move 1 cell down, 1 cell left, 2 cells up, 2 cells right, 3 cells 

down, 3 cells left, etc. During the moving we can fill the numbers from 0 to 

N2-1 consequently at the cells we visit. 

Checking the Idea 

Let’s check the idea. First we need to find the starting cell and check we 

have a correct algorithm for it. If N is odd, the starting cell seems to be the 

absolute center cell of the matrix. We can check this for N=1, N=3 and N=5 

on a sheet of paper and this confirms to be correct. If N is even number, it 

seems like the starting cell is located upper-right from the central point of 



Chapter 26. Sample Programming Exam – Topic #3  1073 

the matrix. At the figure below the central point is shown for a matrix of size 

4 x 4 and the starting point located at the upper-right direction: 

 

Now let’s check the matrix filling algorithm. We take for example N=4. 

Let’s start from the starting cell. The first direction is down. We go down 1 

cell, then left 1 cell, then up 2 cells, then right 2 cells, then down 3 cells, then 

left 3 cells and finally up 3 cells. For simplicity we can assume the last step is 

4 cells up but we stop at the first moment when the entire matrix if filled. The 

figure below shows what we could draw on a sheet of paper to trace how 

the algorithm works. See the small sketch of our algorithm, done by hand 

during the idea checking process: 

 

After sketching the algorithm paper for N = 1, 2 and 3 on a sheet of paper 

we see that it works correctly. Seems like the idea is correct and we can 

thinks about how to implement it. 

Data Structures and Efficiency 

Let’s start with choosing the data structure for implementing the matrix. It’s 
appropriate to have direct access to each element of the matrix so we will 

choose a two-dimensional array matrix of integer type. When starting the 

program we read from the standard input the dimensionality n of the matrix 

and initialize it as it follows: 

int[,] matrix = new int[n,n]; 

In this case the choice of a data structure is unambiguous. We will keep 

the matrix in a two-dimensional array. We have no other data. We will not 

have problems with the performance because the program will make as much 

steps as the elements in the matrix are. 

upper-right

from the center

the central point 

in the matrix



1074  Fundamentals of Computer Programming with C# 

Implementation of the Idea: Step by Step 

We may split the implementation into few steps. A loop runs from 0 to N2-1 

and at each iteration it does the following steps: 

- Fill the current cell of the matrix with the next number (this is a single 

move in the current direction). 

- Check whether the current direction should be changed and if 

yes, change it and calculate the number of moves in the new direction. 

- Move the current position to the next cell in the current direction 

(e.g. one position down / left / up / right). 

Implementing the First Few Steps 

We can represent the current position with integer variables positionX and 

positionY – the two coordinates for the position. At each iteration we will 

move to the next cell in the current direction and positionX and positionX 

will change accordingly. 

For modeling the behavior of filling the spiral matrix we will use the variables 

stepsCount (total number of moves in the current direction), stepPosition 

(the move number in the current direction) and stepChange (flag showing if 

we have to change the value of stepCount – increments after every 2 

direction changes). 

Let’s see how we can implement this idea as a code: 

for (int i = 0; i < count; i++) 
{ 

 // Fill the current cell with the current value 
 matrix[positionY, positionX] = i; 
 

 // Check for direction / step changes 
 if (stepPosition < stepsCount) 

 { 

  stepPosition++; 
 } 
 else 

 { 
  stepPosition = 1; 
  if (stepChange == 1) 

  { 
   stepsCount++; 
  } 

  stepChange = (stepChange + 1) % 2; 
  direction = (direction + 1) % 4; 
 } 



Chapter 26. Sample Programming Exam – Topic #3  1075 

 
 // Move to the next cell in the current direction 
 switch (direction) 

 { 
  case 0: 
   positionY++; 

   break; 
  case 1: 
   positionX--; 

   break; 
  case 2: 

   positionY--; 

   break; 
  case 3: 
   positionX++; 

   break; 
 } 
} 

Performing a Partial Check after the First Few Steps 

This is the moment to point out the unlikelihood of creating the body of such a 

loop from the first time, without making any mistakes. We already know the 

rule for writing the code step by step and testing after each piece of 

code is written but for the body of this loop the rule is hard to be applied – 

we have no independent subproblems, which can be tested separately 

of each other. To test the above code we need first to finish it: to assign initial 

values for all the variables used. 

Assigning the Initial Values 

After we have a well thought-out idea for the algorithm (even if we are not 

completely sure that the written code will work correctly), it remains to set 

initial values of the already defined variables and to print the matrix, 

obtained after the implementation of the loop. 

It is clear that the number of loop iterations is exactly N2 and that’s why we 

replace the variable count with this value. From the two given examples and 

our own additional examples (written on a paper) we determine the initial 

position in the matrix depending on the parity (odd / even) of its size: 

int positionX = n / 2; // The middle of the matrix 
int positionY = n % 2 == 0 ? (n / 2) - 1 : (n / 2); // middle 

To the rest of the variables we give the following initial values (we have 

already explained their semantics): 



1076  Fundamentals of Computer Programming with C# 

int direction = 0; // The initial direction is "down" 
int stepsCount = 1; // Perform 1 step in the current direction 
int stepPosition = 0; // 0 steps already performed 

int stepChange = 0; // Steps count will change after 2 steps 

Putting All Together 

The last subproblem we have to solve for creating a working program is 

printing the matrix on the standard output. Let’s write it, then put all code 

together and start testing. 

The fully implemented solution is shown below. It includes reading the 

input data (matrix size), filling the matrix in a spiral (calculating the matrix 

center and filling it cell by cell) and output the result: 

MatrixSpiral.cs 

using System; 
 

public class MatrixSpiral 
{ 
 static void Main() 

 { 
  Console.Write("N = "); 
  int n = int.Parse(Console.ReadLine()); 

  int[,] matrix = new int[n, n]; 
 
  FillMatrix(matrix, n); 

 
  PrintMatrix(matrix, n); 
 } 

 

 private static void FillMatrix(int[,] matrix, int n) 
 { 

  int positionX = n / 2; // The middle of the matrix 
  int positionY = n % 2 == 0 ? (n / 2) - 1 : (n / 2); 
 

  int direction = 0; // The initial direction is "down" 
  int stepsCount = 1; // Perform 1 step in current direction 
  int stepPosition = 0; // 0 steps already performed 

  int stepChange = 0; // Steps count changes after 2 steps 
 

  for (int i = 0; i < n * n; i++) 

  { 
   // Fill the current cell with the current value 
   matrix[positionY, positionX] = i; 



Chapter 26. Sample Programming Exam – Topic #3  1077 

 
   // Check for direction / step changes 
   if (stepPosition < stepsCount) 

   { 
    stepPosition++; 
   } 

   else 
   { 
    stepPosition = 1; 

    if (stepChange == 1) 
    { 

     stepsCount++; 

    } 
    stepChange = (stepChange + 1) % 2; 
    direction = (direction + 1) % 4; 

   } 
 
   // Move to the next cell in the current direction 

   switch (direction) 
   { 
    case 0: 

     positionY++; 
     break; 
    case 1: 

     positionX--; 
     break; 
    case 2: 

     positionY--; 
     break; 
    case 3: 

     positionX++; 

     break; 
   } 

  } 
 } 
 

 private static void PrintMatrix(int[,] matrix, int n) 
 { 
  for (int i = 0; i < n; i++) 

  { 
   for (int j = 0; j < n; j++) 

   { 

    Console.Write("{0,3}", matrix[i, j]); 
   } 



1078  Fundamentals of Computer Programming with C# 

   Console.WriteLine(); 
  } 
 } 

} 

Testing the Solution 

After we have implemented the solution it is appropriate to test it with enough 

values of N to ensure it works properly. We start with the sample values 3 

and 4 and then we check for 5, 6, 7, 8, 9, … It works well. 

It is important to check the border cases: 0 and 1. They work correctly as 

well. We do few more tests and we make sure all cases work correctly. We 

might notice that when N is large (e.g. 50) the output looks ugly, but this 

cannot be improved much. We can add more spaces between the numbers 

but the console is limited to 80 characters and the result is still ugly. We will 

not try to improve this further. 

It is not necessary to test the program for speed (performance test, for 

example with N=1,000) because with a very big N the output will be 

extremely large and the task will be pointless. 

We cannot find any non-working cases so we assume the algorithm and its 

implementation are both correct and the problem is successfully solved. 

Now we are ready for the next problem from the exam. 

Problem 2: Counting Words in a Text File 

We are given a text file words.txt, which contains several words, one per 

each line. Each word consists of Latin letters only. Write a program, which 

retrieves the number of matches of each of the given words as a 

substring in the file text.txt. The counting is case insensitive. The result 

should be written into a text file named result.txt in the following format 

(the words should appear in the same order as given in the input file 

words.txt): 

<word1> --> <number of matches> 

<word2> --> <number of matches> 
… 

Sample input file words.txt: 

for 
academy 

student 
Java 
develop 



Chapter 26. Sample Programming Exam – Topic #3  1079 

CAD 

Sample input file text.txt: 

The Telerik Academy for software development engineers is a 
famous center for free professional training of .NET experts. 
Telerik Academy offers courses designed to develop practical 

computer programming skills. Students graduated the Academy are 
guaranteed to have a job as a software developers in Telerik. 

Sample result file result.txt: 

for --> 2 

academy --> 3 
student --> 1 
Java --> 0 

develop --> 3 
CAD --> 3 

Below are the locations of the matched words from the above example: 

The Telerik Academy for software development engineers is a 
famous center for free professional training of .NET experts. 

Telerik Academy offers courses designed to develop practical 
computer programming skills. Students graduated the Academy are 
guaranteed to have a job as a software developers in Telerik. 

Start Thinking on the Problem 

The emphasis of the given problem seems not so much on the algorithm, 

but on its technical implementation. In order to write the solution we must 

be familiar with working with files in C# and with the basic data structures, as 

well as string processing in .NET Framework. 

Inventing an Idea for a Solution 

We get a piece of paper, write few examples and we come up with the 

following idea: we read the words file, scan through the text and check 

each word from the text for matches with the preliminary given list of 

words and increase the counter for each matched word. 

Checking the Idea 

The above idea for solving the task is trivial but we can still check it by 

writing down on a piece of paper the sample input (words and text) and the 

expected result. We just scan through the text word by word in our paper 



1080  Fundamentals of Computer Programming with C# 

example and when we find a match with some of the preliminary given words 

(as a substring) we increment the counter for the matched word. The idea 

works in our example. 

Now let’s think of counterexamples. In the same time we might also come 

with few questions regarding the implementation: 

- How do we scan the text and search for matches? We can scan the 

text character by character or line by line or we can read the 

entire text in the memory and then scan it in the memory (by string 

matching or by a regular expression). All of these approaches might 

work correctly but the performance could vary, right? We will think 

about the performance a bit later. 

- How do we extract the words from the text? Maybe we can read the 

text and split it by all any non-letter characters? Where shall we take 

these non-letter characters from? Or we can read the text char by char 

and once we find a non-letter character we will have the next word from 

the text? The second idea seems faster and will require less memory 

because we don’t need to read all the text at once. We should think 

about this, right? 

- How do we match two words? This is a good question. Very good 

question. Suppose we have a word from the text and we want to match 

it with the words from the file words.txt. For example, we have 

“Academy” in the text and we should find whether it matches as 
substring the “CAD” word from the list of words. This will require 
searching each word from the list as a substring in each word from the 

text. Also can we have some word appearing several times inside 

another? This is possible, right? 

From all the above questions we can conclude that we don’t need to read 
the text word by word. We need to match substrings, not words! The title 

of the problem is misleading. It says “Counting Words in a Text File” but it 
should be “Counting Substrings in a Text File”. 

It is really good that we found we have to match substrings (instead of 

words), before we have implemented the code for the above idea, right? 

Inventing a Better Idea 

Now, considering the requirement for substring matching, we come with few 

new and probably better ideas about solving the problem: 

- Scan the text line by line and for each line from the text and each 

word check how many times the word appears as substring in the 

line. The last can be counted with String.IndexOfſ…ƀ method in a 

loop. We already have solved this subproblem in the chapter “Strings 
and Text Processing” (see the section “Finding All Occurrences of a 
Substring”). 



Chapter 26. Sample Programming Exam – Topic #3  1081 

- Read the entire text and count the occurrences of each word in it 

(as a substring). This idea is very similar to the previous idea but it 

will require much memory to read the entire text. Maybe this will not be 

efficient. We gain nothing, but potentially we will run “out of memory”. 

- Scan the text char by char and store the read characters in a buffer. 

After each character read we check if the text in the buffer ends 

with some of the words from the list. We will not need to search the 

words in the buffer because we check for each word after each character 

is read. We could also clear the buffer when we read any non-letter 

character (because the list of words for matching should contain letters 

only). Thus the memory consumption will be very low. 

The first and the last idea seem to be good. Which of them to implement? 

Maybe we could implement both of them and choose the faster one. Having 

two solutions will also improve the testing because we should get identical 

results with both of the solutions on all test cases. 

Checking the New Ideas 

We have two good ideas and we need to check them for correctness 

before thinking about implementation. How to check the ideas? We can invent 

a good test case on a piece of paper and try the ideas on it. 

Let’s have the following list of words: 

Word 
S 
MissingWord 

DS 
aa 

We might be interested to find the number of occurrences of the above words 

in the following text: 

Word? We have few words: first word, second word, third word. 

Some passwords: PASSWORD123, @PaSsWoRd!456, AAaA, !PASSWORD 

The expected result is as follows: 

Word --> 9 
S --> 13 
MissingWord --> 0 

DS --> 2 
aa --> 3 

In the above example we have many different special cases: whole-word 

matching, matching as a substring, matching in different casing, matches in 

the start / end of the text, several matches inside the same word, overlapping 



1082  Fundamentals of Computer Programming with C# 

matches, etc. This example is a very good representative of the common 

case for this problem. It is important to have such short but 

comprehensive test case when solving programming problems. It is 

important to have it early, when checking the ideas, before any code is 

written. This avoids mistakes, catches incorrect algorithms and saves time! 

Checking the Line by Line Algorithm 

Now let’s check the first algorithm: read the two lines of text and check 

how many times each of the words from the given list occurs in each line 

ignoring the character casing. At the first line we find as substrings (ignoring 

the case) “word” р times, “s” 3 times, “MissingWord” 0 times, “aa” 0 times 

and “ds” – 1 time. At the second line we find as substrings (ignoring the case) 

“word” п times, “s” 10 times, “MissingWord” 0 times, “aa” 3 times and “ds” – 

1 time. We sum the occurrences and we find that the result is correct. 

We try to find counterexamples, but we can’t. The algorithm may not work 
with words spanning multiple lines. This is not possible by definition. It may 

also have issues with the overlapping matches like finding “aa” in “AAaA”. 
This will be definitely checked after the algorithm is implemented. 

Checking the Char by Char Algorithm 

Let’s check the other algorithm: scan through the text char by char, 

holding the characters in a buffer. After each character if the buffer ends with 

some of the words (ignoring the character casing), the occurrences of the 

matched word are increased. If a non-letter is occurred, the buffer is cleaned. 

We start from empty buffer and append the first char from the text “W” to 
the buffer. None of the words match the end of the buffer. We append 

“o” and the buffer holds “Wo”. No matches. Then we append “r”. The buffer 
holds “Wor”. Again no matches are found with any of the words. We append 

the next char “d” and the buffer holds “Word”. We have found a match 

with the word form a list: “word”. We increase the number of occurrences of 

the matched word from zero to one. The next char is “?” and we clean the 

buffer, because it is not a letter. The next char is “ ” (space). We again clean 

the buffer. The next char is “W”. We append it to the buffer. No matches with 

any of the words. We continue further and further… After the last character is 
processed, the algorithm finishes and the results are correct. 

We try to find counterexamples, but we can’t. The algorithm may not work 
with words spanning multiple lines, but this is not possible by definition. 

Decompose the Problem into Subproblems 

Now let’s try to divide the problem into subproblems. This should be done 
separately for the both algorithms we want to try because they differ 

significantly. 

Line by Line Algorithm Decomposed into Subproblems 

Let’s decompose the line by line algorithm into subproblems (sub-steps): 



Chapter 26. Sample Programming Exam – Topic #3  1083 

1. Read the input words. We can read the file words.txt by using 

File.ReadAllLinesſ…ƀ. It reads a text file in a string[] array of lines. 

2. Process the lines of the text one by one to count the occurrences of 

each word in it. Initially assign zero occurrences for each word. Read the 

input file text.txt line by line. For each line from the text and for 

each word check the number of its occurrences (this is a separate 

subproblem) and increase the counters for each match. The occurrences 

counting should be case-insensitive. 

3. Count the number of occurrences of certain substring in certain 

text. This is a separate subproblem. We find the leftmost occurrence of 

the substring in the text though string.IndexOfſ…ƀ. If the returned 

index > -1 (the substring exists), we increase the counter and find the 

next occurrence of the substring on the right from the last found index. 

We perform this in a loop until we find -1 as a result which means that 

there are no more matches. To perform case-insensitive searching we 

can pass a special parameter StringComparison.OrdinalIgnoreCase 

to the IndexOf() method. 

4. Print the results. Process all words and for each word print it along 

with its counter holding its occurrences in the output file result.txt. 

Char by Char Algorithm Decomposed into Subproblems 

Let’s decompose the char by char algorithm into subproblems (sub-steps): 

1. Read the input words. We can read the file words.txt by using 

File.ReadAllLinesſ…ƀ. It reads a text file in a string[] array of lines. 

The original words can be saved and a copy of them in lowercase can be 

made to simplify the matching with ignoring the character casing. 

2. Process the text char by char. Read the input file text.txt and 

append the letters into a buffer (StringBuilder). After each letter 

appended check whether the text in the buffer ends with some of the 

words in the input list of words (this check is a separate subproblem). If 

so, increase the number occurrences of the matched word. If a non-

letter character is found, clean the buffer. Letters are converted to 

lowercase before added in the buffer. 

3. Check whether a certain text (StringBuilder) ends by a certain 

string. In case the string has length n lower than the length of the text, 

the result is false. Otherwise the n letters of the string should be 

compared one by one with the last n letters of the text. If a mismatch is 

found, the result is false. If all checks pass, the result is true. 

4. Print the results. Process all words and for each word print it along 

with its counter holding its occurrences in the output file result.txt. 



1084  Fundamentals of Computer Programming with C# 

Think about the Data Structures 

In the line by line algorithm we don’t have any need of special data 
structures. We can keep the words in an array or list of strings. We can 

keep the number of occurrences for each word in array of integer values. 

The text lines we can keep in strings. 

In the char by char algorithm the situation is similar. We don’t need any 
special data structures. We can keep the words in an array or list of 

strings. We can keep the number of occurrences for each word in array of 

integer values. The buffer for the characters we can implement by 

StringBuilder (because we need to append chars many times). 

Think about the Performance 

Following the guidelines for problem solving from the chapter “Methodology of 
Problem Solving” we should think about the efficiency and performance 

before writing any code. 

The line by line algorithm will process the entire text line by line and for 

each text line it will search for all of the words. Thus if the text has a total size 

of t characters and the number of words are w, the algorithm will totally 

perform w string searches in t characters. Each search for a word in the text 

will pass through the entire text (at least once, but maybe not always). If we 

assume that searching for a word in a text is a linear time operation, we will 

have w scans through the entire text, so the excepted running time in 

quadratic: O(w*t). If we search in MSDN or in Internet, we will be unable to 

find any information about how exactly String.IndexOfſ…ƀ works internally 

and whether it runs in linear time or it is slower. This method calls a Win32 

API function so it cannot be decompiled. Thus the best way to check its 

performance is by measuring. 

The char by char algorithm will process the entire text char by char and for 

each character it will perform a string matching for each of the words. 

Suppose the text has t characters and the number of the words is w. In the 

average case the string matching will run in constant time (it will require just 

one check if the first letter is not matching, two checks if the first letter 

matches, etc.). In the worst case the string matching will require n 

comparisons where n is the length of the word being matched. Thus in the 

average case the expected running time of the algorithm will be 

quadratic: O(w*t). In the worst case it will be significantly slower. 

It seems like the line by line algorithm is expected to run faster but we 

are uncertain about how fast is string.IndexOfſ…ƀ, so this cannot be 

definitely stated. If we are at an exam, we will probably choose to implement 

the line by line algorithm. Just for the experiment, let’s implement both of 
them and compare their performance. 



Chapter 26. Sample Programming Exam – Topic #3  1085 

Implementation: Step by Step 

If we directly follow the steps, which we have already identified we can 

write the code with ease. Of course it is better to implement the algorithms 

step-by-step, to find and fix the bugs early. 

Line by Line Algorithm: Step by Step Implementation 

We can start implementing the line by line algorithm for word counting in a 

text file from the method that counts how many times a substring 

appears in a text. It should look like the following: 

static int CountOccurrences( string substring, string text) 
{ 
 int count = 0; 

 int index = 0; 
 while (true) 
 { 

  index = text.IndexOf(substring, index); 
  if (index == -1) 
  { 

   // No more matches 
   break; 
  } 

  count++; 
 } 
 return count; 

} 

Let’s test it before going further: 

Console.WriteLine( 
 CountOccurrences("hello", "Hello World Hello")); 

The result is 0 – wrong! It seems like we have forgotten to ignore the 

character casing. Let’s fix this. We need to change the name of the method 

as well and add the StringComparison.OrdinalIgnoreCase option when 

searching for the given substring: 

static int CountOccurrencesIgnoreCase( 
 string substring, string text) 

{ 
 int count = 0; 

 int index = 0; 

 while (true) 
 { 



1086  Fundamentals of Computer Programming with C# 

  index = text.IndexOf(substring, index, 
   StringComparison.OrdinalIgnoreCase); 
  if (index == -1) 

  { 
   // No more matches 
   break; 

  } 
  count++; 
 } 

 return count; 
} 

Let’s test again with the same example. The program hangs! What 

happens? We step through the code using the debugger and we find that the 

variable index takes the first occurrence at position 0 and at the next 

iteration it takes the same occurrence again at position 0 and the program 

enters into an endless loop. This is easy to fix. Just start searching from 

position index+1 (the next position on the right), not from index: 

static int CountOccurrencesIgnoreCase( 
 string substring, string text) 
{ 

 int count = 0; 
 int index = 0; 
 while (true) 

 { 
  index = text.IndexOf(substring, index + 1, 
   StringComparison.OrdinalIgnoreCase); 

  if (index == -1) 
  { 
   // No more matches 

   break; 
  } 
  count++; 
 } 

 return count; 
} 

We run the fixed code with the same test. Now the result is incorrect (1 

occurrence instead of 2). We again trace the program with the debugger and 

we find that the first match is at position 12. Immediately we find out why 

this happens: initially we start from position 1 (index + 1 when index is 0) 

and we skip the start of the text (position 0). 

This is easy to fix: 



Chapter 26. Sample Programming Exam – Topic #3  1087 

static int CountOccurrencesIgnoreCase( 
 string substring, string text) 
{ 

 int count = 0; 
 int index = -1; 
 while (true) 

 { 
  index = text.IndexOf(substring, index + 1, 
   StringComparison.OrdinalIgnoreCase); 

  if (index == -1) 
  { 

   // No more matches 

   break; 
  } 
  count++; 

 } 
 return count; 
} 

We test again with the same example and finally the result is correct. We 

take another, more complex test: 

Console.WriteLine(CountOccurrencesIgnoreCase( 
 "Word", "Word? We have few words: first word, second word," + 
 "third word. Passwords: PASSWORD123, @PaSsWoRd, !PASSWORD")); 

The result is again correct (9 matches). We test with missing word and the 

result is again correct (0 matches). This is enough. We assume the method 

works correctly. Now let’s continue with the next step: read the words. 

string[] words = File.ReadAllLines("words.txt"); 

There is no need to test this code. It is too simple to have bugs. We will 

test it when we test the entire solution. Let’s not write the main logic of the 
program which reads the text line by line and counts the occurrences of 

each of the input words in each of the lines: 

int[] occurrences = new int[words.Length]; 
using (StreamReader text = File.OpenText("text.txt")) 

{ 
 string line; 
 while ((line = text.ReadLine()) != null) 

 { 
  for (int i = 0; i < words.Length; i++) 
  { 



1088  Fundamentals of Computer Programming with C# 

   string word = words[i]; 
   int wordOccurrences = 
    CountOccurrencesIgnoreCase(word, line); 

   occurrences[i] += wordOccurrences; 
  } 
 } 

} 

This code definitely should be tested but it will be easier to write the code 

which prints the results to simplify testing. Let’s do this: 

using (StreamWriter result = File.CreateText("result.txt")) 
{ 

 for (int i = 0; i < words.Length; i++) 
 { 
  result.WriteLine("{0} --> {1}", words[i], occurrences[i]); 

 } 
} 

The complete implementation of the line by line string occurrences 

counting algorithms looks as follows: 

CountSubstringsLineByLine.cs 

using System; 
using System.IO; 

 
public class CountSubstringsLineByLine 
{ 

 static void Main() 
 { 

  // Read the input list of words 

  string[] words = File.ReadAllLines("words.txt"); 
 
  // Process the file line by line 

  int[] occurrences = new int[words.Length]; 
  using (StreamReader text = File.OpenText("text.txt")) 
  { 

   string line; 
   while ((line = text.ReadLine()) != null) 
   { 

    for (int i = 0; i < words.Length; i++) 

    { 
     string word = words[i]; 

     int wordOccurrences = 



Chapter 26. Sample Programming Exam – Topic #3  1089 

      CountOccurrencesIgnoreCase(word, line); 
     occurrences[i] += wordOccurrences; 
    } 

   } 
  } 
 

  // Print the result 
  using (StreamWriter result = File.CreateText("result.txt")) 
  { 

   for (int i = 0; i < words.Length; i++) 
   { 

    result.WriteLine("{0} --> {1}", 

     words[i], occurrences[i]); 
   } 
  } 

 } 
 
 static int CountOccurrencesIgnoreCase( 

  string substring, string text) 
 { 
  int count = 0; 

  int index = -1; 
  while (true) 
  { 

   index = text.IndexOf(substring, index + 1, 
    StringComparison.OrdinalIgnoreCase); 
   if (index == -1) 

   { 
    // No more matches 
    break; 

   } 

   count++; 
  } 

  return count; 
 } 
} 

Testing the Line by Line Algorithm 

Now let’s test the entire code of the program. We try our test and it 

works as expected! 

text.txt 



1090  Fundamentals of Computer Programming with C# 

Word? We have few words: first word, second word, third word. 
Some passwords: PASSWORD123, @PaSsWoRd!456, AAaA, !PASSWORD 

words.txt 

Word 

S 
MissingWord 
DS 

aa 

result.txt 

Word --> 9 
S --> 13 

MissingWord --> 0 
DS --> 2 
aa --> 3 

We also try the sample test from the problem description and it also 

works correctly. We try few other tests and all they work correctly. We try 

also few border cases like empty text and empty list of words. All these 

cases are handled correctly. It seems like our line by line word counting 

algorithm and its implementation correctly solve the problem. 

We need to conduct only a performance test but let’s first implement the 
other algorithm to be able to compare which is faster. 

Char by Char Algorithm: Step by Step Implementation 

Let’s now implement the char by char string occurrences counting 

algorithm. We will need a StringBuilder to hold the characters we read 

and a method to check for a match at the end of the StringBuilder. Let’s 
define this method first. For more flexibility it can be implemented as 

extension method to the StringBuilder class (recall how extension 

methods work from the chapter “Lambda Expressions and LINQ”): 

static bool EndsWith(this StringBuilder buffer, string str) 

{ 
 for (int bufIndex = buffer.Length-str.Length, strIndex = 0; 
  strIndex < str.Length; 

  bufIndex++, strIndex++) 
 { 

  if (buffer[bufIndex] != str[strIndex]) 

  { 
   return false; 



Chapter 26. Sample Programming Exam – Topic #3  1091 

  } 
 } 
 return true; 

} 

Let’s test the method with a sample text and its ending: 

Console.WriteLine( 
 new StringBuilder("say hello").EndsWith("hello")); 

This test produces a correct result: True. Let’s test the negative case: 

Console.WriteLine(new StringBuilder("abc").EndsWith("xx")); 

This test produces a correct result: False. Let’s test what will happen if the 
ending is longer than the test: 

Console.WriteLine(new StringBuilder("a").EndsWith("abcdef")); 

We get IndexOutOfRangeException. We found a bug! It is easy to fix – we 

can return false if the ending string is longer than the text where it should 

be found: 

static bool EndsWith(this StringBuilder buffer, string str) 

{ 
 if (buffer.Length < str.Length) 
 { 

  return false; 
 } 
 for (int bufIndex = buffer.Length - str.Length, strIndex = 0; 

  strIndex < str.Length; 
  bufIndex++, strIndex++) 

 { 

  if (buffer[bufIndex] != str[strIndex]) 
  { 
   return false; 

  } 
 } 
 return true; 

} 

We run all the tests again and all of them pass. We assume the above 

method is correctly implemented. 

Now let’s continue with the step-by-step implementation. Let’s implement the 
reading of the words: 



1092  Fundamentals of Computer Programming with C# 

string[] wordsOriginal = File.ReadAllLines("words.txt"); 

This is the same code from the line by line algorithm and it should work. 

Let’s now implement the main program logic which reads the text char by 

char in a buffer of characters and after each letter checks all input words for 

matches at the ending of the buffer: 

int[] occurrences = new int[words.Length]; 
using (StreamReader text = File.OpenText("text.txt")) 
{ 

 StringBuilder buffer = new StringBuilder(); 
 int nextChar; 
 while ((nextChar = text.Read()) != -1) 

 { 
  char ch = (char)nextChar; 
  if (char.IsLetter(ch)) 

  { 
   // A letter is found --> check all words for matches 
   buffer.Append(ch); 

   for (int i = 0; i < words.Length; i++) 
   { 
    string word = words[i]; 

    if (buffer.EndsWith(word)) 
    { 
     occurrences[i]++; 

    } 
   } 
  } 

  else 
  { 
   // A non-letter character is found --> clean the buffer 

   buffer.Clear(); 
  } 
 } 
} 

To test the code we will need few lines of code to print the output: 

using (StreamWriter result = File.CreateText("result.txt")) 
{ 
 for (int i = 0; i < words.Length; i++) 

 { 
  result.WriteLine("{0} --> {1}", 
   words[i], occurrences[i]); 



Chapter 26. Sample Programming Exam – Topic #3  1093 

 } 
} 

Now the program is completed and we should test it. 

Testing the Char by Char Algorithm 

Let’s test the entire code of the program. We try our test and it fails. The 

produced result is incorrect: 

Word --> 1 

S --> 6 
MissingWord --> 0 
DS --> 0 

aa --> 0 

What’s wrong? Maybe the character casing? Do we compare the 

characters in case-insensitive fashion? No. We found the problem. 

How to fix the character casing? Maybe we need to fix the EndsWithſ…ƀ 

method. We search in MSDN and in Internet and we cannot find a method to 

compare case-insensitively characters. We can do something like this: 

if (char.ToLower(ch1) != char.гoLowerſchɩƀƀ … 

The above code will work but it will convert the characters to lowercase many 

times, at each character comparison. This may be slow so it is better to 

lowercase the words and the text preliminary before comparing. If we 

lowercase the words, they will be printed in lowercase at the output and this 

will be incorrect. So we need to remember the original words and to make a 

copy of them in lowercase. Let’s try it. We can use the built-in extension 

methods from System.Linq to perform the lowercase conversion: 

string[] wordsOriginal = File.ReadAllLines("words.txt"); 
string[] wordsLowercase = 
 wordsOriginal.Select(w => w.ToLower()).ToArray(); 

We need to apply few other fixes and finally we get the following full source 

code of the char by char algorithm for counting the occurrences of a list of 

substrings in given text: 

CountSubstringsCharByChar.cs 

using System.IO; 
using System.Linq; 
using System.Text; 

 



1094  Fundamentals of Computer Programming with C# 

public static class CountSubstringsCharByChar 
{ 
 static void Main() 

 { 
  // Read the input list of words 
  string[] wordsOriginal = File.ReadAllLines("words.txt"); 

  string[] wordsLowercase = 
   wordsOriginal.Select(w => w.ToLower()).ToArray(); 
 

  // Process the file char by char 
  int[] occurrences = new int[wordsLowercase.Length]; 

  StringBuilder buffer = new StringBuilder(); 

  using (StreamReader text = File.OpenText("text.txt")) 
  { 
   int nextChar; 

   while ((nextChar = text.Read()) != -1) 
   { 
    char ch = (char)nextChar; 

    if (char.IsLetter(ch)) 
    { 
     // A letter is found --> check all words for matches 

     ch = char.ToLower(ch); 
     buffer.Append(ch); 
     for (int i = 0; i < wordsLowercase.Length; i++) 

     { 
      string word = wordsLowercase[i]; 
      if (buffer.EndsWith(word)) 

      { 
       occurrences[i]++; 
      } 

     } 

    } 
    else 

    { 
     // A non-letter is found --> clean the buffer 
     buffer.Clear(); 

    } 
   } 
  } 

 
  // Print the result 

  using (StreamWriter result = File.CreateText("result.txt")) 

  { 
   for (int i = 0; i < wordsOriginal.Length; i++) 



Chapter 26. Sample Programming Exam – Topic #3  1095 

   { 
    result.WriteLine("{0} --> {1}", 
     wordsOriginal[i], occurrences[i]); 

   } 
  } 
 } 

 
 static bool EndsWith(this StringBuilder buffer, string str) 
 { 

  if (buffer.Length < str.Length) 
  { 

   return false; 

  } 
  for (int bufIndex = buffer.Length-str.Length, strIndex = 0; 
   strIndex < str.Length; 

   bufIndex++, strIndex++) 
  { 
   if (buffer[bufIndex] != str[strIndex]) 

   { 
    return false; 
   } 

  } 
  return true; 
 } 

} 

We need to test again with our example. Now the program works. The 

result is correct: 

Word --> 9 
S --> 13 

MissingWord --> 0 
DS --> 2 
aa --> 3 

We test with all other tests we have (the test from the problem statement, 

the border cases, etc.) and all of them pass correctly. 

Testing for Performance 

Now it is time to test for performance both our solutions. We need a big 

test. We can do it with copy-paste. It is easy to copy-paste the text from 

our text example 10,000 times and its words 100 times. The repeating 

words might cause inaccuracies in performance measuring so we manually 

replace the last 26 words with the letters from “a” to “z”. We also play a bit 
with the rectangular selection in Visual Studio ([Alt] + mouse selection) 

http://lmgtfy.com/?q=rectangular+selection+Visual+Studio


1096  Fundamentals of Computer Programming with C# 

and we insert the alphabet as a vertical column in few other places. All this 

will result in 20,000 lines of text (1.2 MB) and 500 words (3 KB). 

To measure the execution time we add two lines of code – before the first 

line of the Main() method and after the last line of the Main() method: 

static void Main() 
{ 
 DateTime startTime = DateTime.Now; 

 // The original code goes here 
 Console.WriteLine(DateTime.Now - startTime); 
} 

Now we execute first the line by line algorithm and it seems not very fast. 

On average computer from 2008 it prints the following result: 

00:01:33.6393559 

After that we execute the char by char algorithm. It produces the 

following output: 

00:00:18.1080357 

Unbelievable! Our char by char processing algorithm is more than 5 times 

faster than the line by line processing algorithm! But … it still is slow! 18 

seconds for 1 MB file is not fast. How about processing 500 MB input and 

search for 10,000 words? 

Invent a Better Idea (Again) 

If we are at exam, we could decide whether to take the risk to submit the 

char by char solution or spend more time to think of faster algorithm. 

This depends on how much time we have to the end of the exam and how 

much problems we have already solved, how hard are the unsolved problems, 

etc. Suppose we have enough time and we want to think more. 

What makes our solution slow? If we have 500 words, we check for each 

of them at each character. We do 500 * length(text) string comparisons. 

The text is scanned only once (char by char). This cannot be improved, right? 

If we do not scan the entire text, we will be unable to find all occurrences. So 

if we want to improve the performance, we should look how to check the 

words faster after each character is read, right? For 500 words we perform 

рлл checks after each character is read. This is slow! Can’t we do it faster? 

In fact we perform a kind of searching for a matching word in a list of 

words? From the data structures we know that this takes linear time. Also, 

from the data structures we know that the fastest data structure for 

searching is the hash-table. OK, can’t we use a hash table? Instead of 



Chapter 26. Sample Programming Exam – Topic #3  1097 

searching the words by trying each of them one by one, can’t we directly find 
the word we need through a hast-table lookup? 

We take a sheet of paper and the pencil and we start making sketches and 

thinking. Suppose we have the text “passwords” and the word “s”. We can 
check the word that we obtain when we append the letters one after another: 

p, pa, pas, pass, passw, passwo, passwor, password, passwords 

In this case we will not match the word “s”, right. In fact, when we find a 
word in the text, we should check all its substrings in the hash table. For 

example if the text is “password”, all its substrings are: 

p, pa, a, pas, as, s, pass, ass, ss, s, passw, assw, ssw, sw, w, passwo, 

asswo, sswo, swo, wo, o, passwor, asswor, sswor, swor, wor, or, r, 

password, assword, ssword, sword, word, ord, rd, d, passwords, 

asswords, sswords, swords, words, ords, rds, ds, s 

There are пр substrings of the word “password”. In a word of n characters we 

have n*(n+1)/2 substrings. This will work well with short words (e.g. 3-4 

characters) and will be slow for the long words (e.g. 15-20 characters). 

We get into another idea? This multi-pattern matching problem should have 

a standard solution. Why don’t we search for it in Internet? We try to search 

for “multi-pattern matching algorithm” in Google and after exploring the 

first few results we learn about the “Aho-Corasick string matching algorithm”. 
Once we know the algorithm name we search for “Aho Corasick C#” and we 

find a nice C# implementation: https://github.com/tupunco/Tup.AhoCorasick. 

The theory says that after we have a new idea, we should check it for 

correctness. The best way to check this idea is by putting the code we found 

in action. In fact we do not implement the algorithm. We just try to adopt it to 

solve the problem we have. 

Counting Substrings with the Aho-Corasick Algorithm 

From the open-source implementation of the Aho-Corasick multi-pattern 

string matching algorithm mentioned above we can take the class 

AhoCorasickSearch and put it in action. We write a new solution of the 

substring counting problem based on what we have learned from the previous 

solutions. We find all matches of all words by the SearchAllſ…ƀ method of 

the AhoCorasickSearch class. Then we use a hash-table to count the number 

of occurrences for each of the words. To ensure we ignore the character 

casing we convert the text and the words into lowercase. This is the code: 

CountSubstringsAhoCorasick.cs 

using System; 
using System.Collections.Generic; 

http://lmgtfy.com/?q=multi-pattern+matching+algorithm
http://lmgtfy.com/?q=multi-pattern+matching+algorithm
http://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_string_matching_algorithm
http://lmgtfy.com/?q=Aho+Corasick+C%23
https://github.com/tupunco/Tup.AhoCorasick


1098  Fundamentals of Computer Programming with C# 

using System.Linq; 
using System.IO; 
 

class CountSubstringsAhoCorasick 
{ 
 static void Main() 

 { 
  DateTime startTime = DateTime.Now; 
 

  // Read the input list of words 
  string[] wordsOriginal = File.ReadAllLines("words.txt"); 

  string[] wordsLowercase = 

   wordsOriginal.Select(w => w.ToLower()).ToArray(); 
 
  // Read the text 

  string text = File.ReadAllText("text.txt").ToLower(); 
 
  // Find all word matches and count them 

  var search = new AhoCorasickSearch(); 
  var matches = search.SearchAll(text, wordsLowercase); 
  Dictionary<string, int> occurrences = 

   new Dictionary<string, int>(); 
  foreach (string word in wordsLowercase) 
  { 

   occurrences[word] = 0; 
  } 
  foreach (var match in matches) 

  { 
   string word = match.Match; 
   occurrences[word]++; 

  } 

 
  // Print the result 

  using (StreamWriter result = File.CreateText("result.txt")) 
  { 
   foreach (string word in wordsOriginal) 

   { 
    result.WriteLine("{0} --> {1}", word, 
     occurrences[word.ToLower()]); 

   } 
  } 

 

  Console.WriteLine(DateTime.Now - startTime); 
 } 



Chapter 26. Sample Programming Exam – Topic #3  1099 

} 

We test the above code with all tests we already have and it seems to work 

correctly. We try the performance test and this time we can be amazed 

by its speed: 

00:00:00.6540374 

It runs really fast. This is the solution we needed and if we are allowed to 

use Internet at the exam, the best way to start when we have a standard 

well-known problem is to look for a well-known solution. 

Problem 3: School 

Students, which are studying in a school, are separated into groups. Each 

of the groups has a teacher. The following information is kept for the 

students: first name and last name. The following information is kept for the 

groups: name, a list of students and teacher. The following information is kept 

for the teachers: first name, last name and a list of groups he is teaching. 

Each teacher can teach more than one group. The following information is 

kept for the school: name, list of the teachers, list of the groups and list of 

the students. Your task is to: 

1. Design a set of classes and relationships between them to model the 

school, its students, teachers and groups. 

2. Implement functionality for add / edit / delete teachers, students, 

groups and their properties. 

3. Implement functionality for printing in human-readable form the 

school, the teachers, the students, the groups and their properties. 

4. Write a sample test program, which demonstrates the work of the 

implemented classes and methods. 

Example of school with teachers, students and groups: 

School "Freedom". Teachers: Tom Johnson, Elizabeth Hall. 

Group "English": David Russell, Nicholas Grant, Emma Fletcher, 
John Brown, Emily Cooper, teacher Elizabeth Hall. 
Group "French": Kevin Simmons, Ian Hayes, teacher Elizabeth 

Hall. 
Group "Informatics": Jessica Carter, Andrew Cooper, Ashley 
Moore, Olivia Adams, Jonathan Smith, teacher Tom Johnson. 

Start Thinking on the Problem 

This is a good example of an exam assignment the purpose of which is to test 

your abilities to use object-oriented programming (OOP) for modeling 



1100  Fundamentals of Computer Programming with C# 

problems from the real life, design classes and relationships between them 

as well as working with collections. 

All we need to solve this problem is to use our object-oriented modeling 

skills that we have gained from chapter “Object-Oriented Programming 

Principles”, especially from the section “Object-Oriented Modeling (OOM)”. 

Inventing an Idea for Solution 

In this task there is nothing complex to invent. It is not algorithmic and 

there is not anything to be thought up. We must define a class for each of 

the described in the problem description objects (students, teachers, 

school students, groups, school, etc.) and after that we should define in each 

class properties to describe its characteristics and methods to implements 

the actions the class can do, e.g. printing in human-readable form. That’s all. 

Following the directions from the section “Object-Oriented Modeling (OOM)” 
we could identify the nouns in the problem description. Some of them 

should be modeled as classes; some of them as properties; and some of them 

may not be important and could be disregarded. 

Reading the text from the problem description and analyzing the nouns, we 

could come to the idea to model the school through defining few interrelated 

classes: Student, Group, Teacher and School. For testing the classes we 

could create a class SchoolTest, which will create few objects of each class 

and will demonstrate their work in action. 

Checking the Idea 

We will not check the idea because there is nothing to be proven or 

checked. We need to write few classes to model a real-world situation: a 

school with students, teachers and groups. 

Dividing the Problem into Subproblems 

The implementation of each of the classes we already identified can be 

considered a subproblem of the given school modeling problem. Thus we 

have the following subproblems: 

- Class for the students – Student. Students will have first name, last 

name and a method for printing in human-readable form – ToString(). 

- Class for the groups – Group. Groups will have a name, a teacher and a 

list of students. It will also have Ȉ method for printing in human-

readable form. 

- Class for the teachers – Teacher. Teachers will have first name, last 

name and a list of groups, as well as Ȉ method for printing in human-

readable form. 

- Class for the school – School. It will have a name and will hold all 

students, all teachers and all groups. 



Chapter 26. Sample Programming Exam – Topic #3  1101 

- Class for testing the other classes – SchoolTest. It will create a school 

with a few students, a few groups holding subsets of the students and a 

few teachers. It will assign one teacher per group and a few groups per 

teacher accordingly. Finally the class will print the school and all its 

teachers, groups and students. 

Think about the Data Structures 

The data structures, needed for this problem, are of two main groups: 

classes and relationships between the classes. Classes will be classes. 

We have nothing to decide here. The interesting part is how to describe the 

relationships between the classes, e.g. when a group has a collection of 

students. 

To describe a relationship (link) between two classes we can use an array. 

With an array we have access to its elements by index, but once it is created 

we will not be able to add or delete items (arrays have a fixed size). This 

makes it uncomfortable for our problem, because we don’t know how 
many students we will have in the school and more students can be added or 

removed after the school is once created. 

List<T> seems more comfortable. It has the advantages of an array and 

also has a variable length – it is easy to add or delete elements. List<T> can 

hold lists of students (inside the school and inside a group), lists of teachers 

(inside a school) and lists of groups (inside a school and inside a teacher). 

So far it seems List<T> is the most appropriate for holding aggregations of 

objects inside another object. To be convinced we will analyze a few more 

data structures. For example hash-table – it is not appropriate in this case, 

because the school, teachers, students and groups are not of a key-value 

type. A hash-table would be appropriate if we need to search a student by its 

unique student ID, but this is not the case. Structures like stack and queue 

are inappropriate – we do not have LIFO or FIFO behavior. 

The structure “set” and its implementation HashSet<T> may be used when we 

need to have uniqueness for given key. It would be good sometimes to use 

this structure to avoid duplicates. We must recall that HashSet<T> requires 

the methods GetHashCode() and Equalsſ…ƀ to be correctly defined by the T 

type. Shall we use sets and where? To answer this question we need to 

recall the problem description. What is says? We need to design a set of 

classes to model the school, its students, teachers and groups and 

functionality for add / edit / delete teachers, students, groups and their 

properties. The easiest way to implement it is to hold a list of students in the 

school, a list of groups for each teacher, etc. Lists are easier to implement. 

Sets give uniqueness, but require Equals() and GetHashCode(). Sets need 

more effort to be used. So we may use lists to simplify our work. 

According to the requirements the school should allow add / edit / delete of 

students, teachers and groups. The easiest way to implement this is to expose 

the lists of students, teachers and groups as public properties. List<T> 



1102  Fundamentals of Computer Programming with C# 

already have methods for add and delete of its elements and its elements are 

accessible by index and editable. It does the job. 

Finally we choose to use List<T> for all aggregations in our classes and we 

will expose all the class members as properties with read and write access. 

We do not have a good reason to restrict the access to the members or 

implement immutable behavior. 

Implementation: Step by Step 

It’s appropriate to start the implementation with the class Student because it 

does not depend on any of the other classes. 

Step 1: Class Student 

In the problem definition we have only two fields representing the first name 

and the last name of a student. We may add a property Name, which returns 

a string with the full name of the student and a ToString() implementation 

to print the student in human-readable form. We might define the class 

Student as follows: 

Student.cs 

public class Student 

{ 
 public string FirstName { get; set; } 
 public string LastName { get; set; } 

 
 public Student(string firstName, string lastName) 
 { 

  this.FirstName = firstName; 
  this.LastName = lastName; 
 } 

 

 public string Name 
 { 

  get 
  { 
   return this.FirstName + " " + this.LastName; 

  } 
 } 
 

 public override string ToString() 
 { 

  return "Student: " + this.Name; 

 } 
} 



Chapter 26. Sample Programming Exam – Topic #3  1103 

We want to allow the class members to be editable so we define the 

FirstName and LastName as public read-write properties. 

Testing the Class Student 

Before continuing forward we want to test the class Student to be sure it is 

correct. Let’s create a testing class with a Main() method and create a 

student in it and print the student: 

class TestSchool 
{ 
 static void Main() 

 { 
  Student studentPeter = new Student("Peter", "Lee"); 
  Console.WriteLine(studentPeter); 

 } 
} 

We run the testing program and we get a correct result: 

Student: Peter Lee 

Now we can continue with the implementation of the other classes. 

Step 2: Class Group 

The next class we can define is Group. We choose it because the only one 

required for its definition is the class Student. The properties, which we will 

define, are the name of the group, a list of the students, which belong to 

the group, and a teacher who teaches the group. To implement the list with 

of the students we will use List<Student>. We will add a ToString() 

method to enable printing the group in a human-readable text form. Let’s see 

the implementation of the class Group: 

Group.cs 

using System.Collections.Generic; 

 
public class Group 
{ 

 public string Name { get; set; } 
 public List<Student> Students { get; set; } 
 

 public Group(string name) 

 { 
  this.Name = name; 

  this.Students = new List<Student>(); 



1104  Fundamentals of Computer Programming with C# 

 } 
 
 public override string ToString() 

 { 
  StringBuilder groupAsString = new StringBuilder(); 
  groupAsString.AppendLine("Group name: " + this.Name); 

  groupAsString.Append("Students in the group: " + 
   this.Students); 
  return groupAsString.ToString(); 

 } 
} 

It is important when we create a group to assign an empty list of students 

to it. If we leave the list of students unassigned, it will be null and when we 

try to add a student, we will get an exception. 

Testing the Class Group 

Let’s now test the Group class. Let’s create a sample group, add few 
students to it and print the group at the console: 

static void Main() 
{ 
 Student studentPeter = new Student("Peter", "Lee"); 

 Student studentMaria = new Student("Maria", "Steward"); 
 Group groupEnglish = new Group("English language course"); 
 groupEnglish.Students.Add(studentPeter); 

 groupEnglish.Students.Add(studentMaria); 
 Console.WriteLine(groupEnglish); 
} 

We run the above testing code and we find a bug: 

Group name: English language course 

Students in the group: 
System.Collections.Generic.List`1[Student] 

It seems like the list of students is printed incorrectly. It is easy to find 

why. The List<T> class does not correctly implement ToString() and we 

need to use another way to print a list of students. We can do this with a for-

loop but let’s try something shorter and more elegant: 

using System.Linq; 

… 
groupAsString.Append("Students in the group: " + 
 string.Join(", ", this.Students.Select(s => s.Name))); 



Chapter 26. Sample Programming Exam – Topic #3  1105 

The above code uses an extension method and a lambda expression to 

select all students’ names as IEnumerable<string> and then combines them 

into a string using a comma as separator. Let’s test the Group class again 

after the fix: 

Group name: English language course 
Students in the group: Peter Lee, Maria Steward 

The group class now works correctly. 

Let’s think a bit: who is teaching the students in the group? We should have 

a teacher, right. Let’s try to add the simplest possible class Teacher and 

define a property of it in the Group class: 

public class Teacher 

{ 
 public string FirstName { get; set; } 
 public string LastName { get; set; } 

 
 public string Name 

 { 
  get 

  { 
   return this.FirstName + ' ' + this.LastName; 
  } 

 } 
} 
 

public class Group 
{ 
 public string Name { get; set; } 

 public List<Student> Students { get; set; } 

 public Teacher Teacher { get; set; } 
 

 public Group(string name) 
 { 
  this.Name = name; 

  this.Students = new List<Student>(); 
 } 
 

 public override string ToString() 
 { 

  StringBuilder groupAsString = new StringBuilder(); 

  groupAsString.AppendLine("Group name: " + this.Name); 
  groupAsString.Append("Students in the group: " + 
   string.Join(", ", this.Students.Select(s => s.Name))); 



1106  Fundamentals of Computer Programming with C# 

  groupAsString.Append("\nGroup teacher: " + 
   this.Teacher.Name); 
  return groupAsString.ToString(); 

 } 
} 

Let’s test again with our sample groups of two students studying English: 

Student studentPeter = new Student("Peter", "Lee"); 
Student studentMaria = new Student("Maria", "Steward"); 

Group groupEnglish = new Group("English language course"); 

groupEnglish.Students.Add(studentPeter); 
groupEnglish.Students.Add(studentMaria); 

Console.WriteLine(groupEnglish); 

We find another bug: 

Unhandled Exception: System.NullReferenceException: Object 
reference not set to an instance of an object. 
   at Group.гoвtringſƀ … 

We step through the debugger and we see that we try to print the teacher’s 
name but there is no teacher (it is null). This is easy to fix. We could check 

whether the teacher exists prior to printing it in the ToString() method: 

if (this.Teacher != null) 

{ 
 groupAsString.Append("\nGroup teacher: " + this.Teacher.Name); 
} 

Let’s test again after the fix. Now we get the following correct result: 

Group name: English language course 

Students in the group: Peter Lee, Maria Steward 

Let’s now add a teacher to the testing group and check what happens: 

Student studentPeter = new Student("Peter", "Lee"); 
Student studentMaria = new Student("Maria", "Steward"); 
Group groupEnglish = new Group("English language course"); 

groupEnglish.Students.Add(studentPeter); 
groupEnglish.Students.Add(studentMaria); 

Teacher teacherNatasha = new Teacher() { 

 FirstName = "Natasha", LastName = "Walters" }; 
groupEnglish.Teacher = teacherNatasha; 



Chapter 26. Sample Programming Exam – Topic #3  1107 

Console.WriteLine(groupEnglish); 

The result is correct: 

Group name: English language course 
Students in the group: Peter Lee, Maria Steward 
Group teacher: Natasha Walters 

Now the Group class works correctly. We can continue with the next class. 

Step 3: Class Teacher 

Let’s define the class Teacher. We already have some piece of it, but let’s 
define it in a better way. The teacher should have first name, last name and a 

list of group he teaches and should be printable in human-readable form. We 

can define it directly repeating the logic in the Group class: 

Teacher.cs 

public class Teacher 
{ 
 public string FirstName { get; set; } 

 public string LastName { get; set; } 
 public List<Group> Groups { get; set; } 
 

 public Teacher(string firstName, string lastName) 
 { 
  this.FirstName = firstName; 

  this.LastName = lastName; 
  this.Groups = new List<Group>(); 
 } 

 

 public string Name 
 { 

  get 
  { 
   return this.FirstName + " " + this.LastName; 

  } 
 } 
 

 public override string ToString() 
 { 

  StringBuilder teacherAsString = new StringBuilder(); 

  teacherAsString.AppendLine("Teacher name: " + this.Name); 
  teacherAsString.Append("Groups of this teacher: " + 



1108  Fundamentals of Computer Programming with C# 

   string.Join(", ", this.Groups.Select(s => s.Name))); 
  return teacherAsString.ToString(); 
 } 

} 

Like in the class Group, it is important to create and empty list of groups 

instead of leaving the Groups property uninitialized. 

Testing the Class Teacher 

Before going further, let’s test the class Teacher. We can create a teacher 

with a few groups and print it at the console: 

static void Main() 
{ 

 Teacher teacherNatasha = new Teacher("Natasha", "Walters"); 
 Group groupEnglish = new Group("English language"); 
 Group groupFrench= new Group("French language"); 

 teacherNatasha.Groups.Add(groupEnglish); 
 teacherNatasha.Groups.Add(groupFrench); 
 Console.WriteLine(teacherNatasha); 

} 

The result is correct: 

Teacher name: Natasha Walters 
Groups of this teacher: English language, French language 

This was expected. We just repeated the same logic like in the Group class 

which was already tested and all bugs in it was fixed. We found once again 

how important is to write the code step by step with testing and bug-

fixing after each step, right? The bug with incorrectly printing the list of 

students would have been repeated when printing the list of groups, right? 

Step 4: Class School 

We finish our object model with the definition of the class School, which 

uses all of the classes we already defined. It should have a name and should 

hold a list of students, a list of teachers and a list of groups: 

public class School 
{ 
 public string Name { get; set; } 

 public List<Teacher> Teachers { get; set; } 
 public List<Group> Groups { get; set; } 
 public List<Student> Students { get; set; } 

 



Chapter 26. Sample Programming Exam – Topic #3  1109 

 public School(string name) 
 { 
  this.Name = name; 

  this.Teachers = new List<Teacher>(); 
  this.Groups = new List<Group>(); 
  this.Students = new List<Student>(); 

 } 
} 

Before testing the class, let’s think what the class School is expected to 

do. It should hold the students, teachers and groups and should be printable 

at the console, right? If we print the school, what should be printed? Maybe 

we should print its name, all its students (with their inner details), all its 

teachers (with their inner details) and all its groups (with their inner details). 

Let’s try to define the ToString() method for the class School: 

public override string ToString() 
{ 
 StringBuilder schoolAsString = new StringBuilder(); 

 schoolAsString.AppendLine("School name: " + this.Name); 
 schoolAsString.AppendLine("Teachers: " + 
  string.Join(", ", this.Teachers.Select(s => s.Name))); 

 schoolAsString.AppendLine("Students: " + 
  string.Join(", ", this.Students.Select(s => s.Name))); 
 schoolAsString.Append("Groups: " + 

  string.Join(", ", this.Groups.Select(s => s.Name))); 
 foreach (var teacher in this.Teachers) 
 { 

  schoolAsString.Append("\n---\n"); 
  schoolAsString.Append(teacher); 
 } 

 foreach (var group in this.Groups) 
 { 
  schoolAsString.Append("\n---\n"); 
  schoolAsString.Append(group); 

 } 
 foreach (var student in this.Students) 
 { 

  schoolAsString.Append("\n---\n"); 
  schoolAsString.Append(student); 
 } 

 return schoolAsString.ToString(); 
} 



1110  Fundamentals of Computer Programming with C# 

We shall not test the class School, because this will be the main purpose of 

our last class: SchoolTest. 

Step 5: Class SchoolTest 

The final thing is the implementation of the class SchoolTest the purpose of 

which is to demonstrate all the classes we have defined (Student, Group, 

Teacher and School) and their methods and properties. This is our last 

subproblem. For the demonstration we create a sample school with a few 

students, a few teachers and a few groups and we print it: 

SchoolTest.cs 

class TestSchool 
{ 

 static void Main() 
 { 
  // Create a few students 

  Student studentPeter = new Student("Peter", "Lee"); 
  Student studentGeorge = new Student("George", "Redwood"); 
  Student studentMaria = new Student("Maria", "Steward"); 

  Student studentMike = new Student("Michael", "Robinson"); 
 
  // Create a group and add a few students to it 

  Group groupEnglish = new Group("English language course"); 
  groupEnglish.Students.Add(studentPeter); 
  groupEnglish.Students.Add(studentMike); 

  groupEnglish.Students.Add(studentMaria); 
  groupEnglish.Students.Add(studentGeorge); 
 

  // Create a group and add a few students to it 
  Group groupJava = new Group("Java Programming course"); 

  groupJava.Students.Add(studentMaria); 

  groupJava.Students.Add(studentPeter); 
 
  // Create a teacher and assign it to few groups 

  Teacher teacherNatasha = new Teacher("Natasha", "Walters"); 
  teacherNatasha.Groups.Add(groupEnglish); 
  teacherNatasha.Groups.Add(groupJava); 

  groupEnglish.Teacher = teacherNatasha; 
  groupJava.Teacher = teacherNatasha; 
 

  // Create another teacher and a group he teaches 

  Teacher teacherSteve = new Teacher("Steve", "Porter"); 
  Group groupHTML = new Group("HTML course"); 

  groupHTML.Students.Add(studentMike); 



Chapter 26. Sample Programming Exam – Topic #3  1111 

  groupHTML.Students.Add(studentMaria); 
  groupHTML.Teacher = teacherSteve; 
  teacherSteve.Groups.Add(groupHTML); 

 
  // Create a school with few students, groups and teachers 
  School school = new School("Saint George High School"); 

  school.Students.Add(studentPeter); 
  school.Students.Add(studentGeorge); 
  school.Students.Add(studentMaria); 

  school.Students.Add(studentMike); 
  school.Groups.Add(groupEnglish); 

  school.Groups.Add(groupJava); 

  school.Groups.Add(groupHTML); 
  school.Teachers.Add(teacherNatasha); 
  school.Teachers.Add(teacherSteve); 

 
  // Modify some of the groups, student and teachers 
  groupEnglish.Name = "Advanced English"; 

  groupEnglish.Students.RemoveAt(0); 
  studentPeter.LastName = "White"; 
  teacherNatasha.LastName = "Hudson"; 

 
  // Print the school 
  Console.WriteLine(school); 

 } 
} 

We run the program and we get the expected result: 

School name: Saint George High School 
Teachers: Natasha Hudson, Steve Porter 

Students: Peter White, George Redwood, Maria Steward, Michael 
Robinson 
Groups: Advanced English, Java Programming course, HTML course 

--- 
Teacher name: Natasha Hudson 
Groups of this teacher: Advanced English, Java Programming 

course 
--- 
Teacher name: Steve Porter 

Groups of this teacher: HTML course 

--- 
Group name: Advanced English 

Students in the group: Michael Robinson, Maria Steward, George 



1112  Fundamentals of Computer Programming with C# 

Redwood 
Group teacher: Natasha Hudson 
--- 

Group name: Java Programming course 
Students in the group: Maria Steward, Peter White 
Group teacher: Natasha Hudson 

--- 
Group name: HTML course 
Students in the group: Michael Robinson, Maria Steward 

Group teacher: Steve Porter 
--- 

Student: Peter White 

--- 
Student: George Redwood 
--- 

Student: Maria Steward 
--- 
Student: Michael Robinson 

Of course in real life programs do not start from the first time, but in this task 

the mistakes you could make are trivial so there’s no point in discussing 

them. All classes are implemented and tested. We are almost finished 

with this problem. 

Testing the Solution 

As usually, it remains to test if the entire solution is working correctly. 

We’ve already done this. We tested all the classes in their nominal case. 

We can do some tests with the border cases, for instance a group without 

students, empty school, etc. It seems like these cases work correctly. We 

might test a student without a name, but it is unclear whether the class 

should keep itself of incorrect names and what is a correct name. We can 

leave these classes without checks for the names. It will be a responsibility of 

their caller to put correct names though their constructors and properties. The 

problem description says nothing about this. 

It is interesting how we delete a student. In our current implementation, if 

we delete a student, we will need to remove it from the school and to remove 

it from all groups he belongs to. The removal itself will require the student to 

have the Equals() method defined correctly or we should compare students 

by hand (property by property). It is unclear from the problem description 

how exactly the “delete student” operation should work. 

We assume we don’t have time and we submit the solution in its current state 
without efficient delete operation. Sometimes it takes too much time to 

fix something and it is better to leave it in not perfect form. Below is the full 

source code of the solution of the school modeling problem: 



Chapter 26. Sample Programming Exam – Topic #3  1113 

School.cs 

using System; 

using System.Collections.Generic; 
using System.Linq; 
using System.Text; 

 
public class Student 
{ 

 public string FirstName { get; set; } 
 public string LastName { get; set; } 

 

 public Student(string firstName, string lastName) 
 { 
  this.FirstName = firstName; 

  this.LastName = lastName; 
 } 
 

 public string Name 
 { 
  get 

  { 
   return this.FirstName + " " + this.LastName; 
  } 

 } 
 
 public override string ToString() 

 { 
  return "Student: " + this.Name; 
 } 

} 

 
 

public class Group 
{ 
 public string Name { get; set; } 

 public List<Student> Students { get; set; } 
 public Teacher Teacher { get; set; } 
 

 public Group(string name) 
 { 

  this.Name = name; 

  this.Students = new List<Student>(); 
 } 



1114  Fundamentals of Computer Programming with C# 

 
 public override string ToString() 
 { 

  StringBuilder groupAsString = new StringBuilder(); 
  groupAsString.AppendLine("Group name: " + this.Name); 
  groupAsString.Append("Students in the group: " + 

   string.Join(", ", this.Students.Select(s => s.Name))); 
  if (this.Teacher != null) 
  { 

   groupAsString.Append("\nGroup teacher: " + 
    this.Teacher.Name); 

  } 

  return groupAsString.ToString(); 
 } 
} 

 
public class Teacher 
{ 

 public string FirstName { get; set; } 
 public string LastName { get; set; } 
 public List<Group> Groups { get; set; } 

 
 public Teacher(string firstName, string lastName) 
 { 

  this.FirstName = firstName; 
  this.LastName = lastName; 
  this.Groups = new List<Group>(); 

 } 
 
 public string Name 

 { 

  get 
  { 

   return this.FirstName + " " + this.LastName; 
  } 
 } 

 
 public override string ToString() 
 { 

  StringBuilder teacherAsString = new StringBuilder(); 
  teacherAsString.AppendLine("Teacher name: " + this.Name); 

  teacherAsString.Append("Groups of this teacher: " + 

   string.Join(", ", this.Groups.Select(s => s.Name))); 
  return teacherAsString.ToString(); 



Chapter 26. Sample Programming Exam – Topic #3  1115 

 } 
} 
 

public class School 
{ 
 public string Name { get; set; } 

 public List<Teacher> Teachers { get; set; } 
 public List<Group> Groups { get; set; } 
 public List<Student> Students { get; set; } 

 
 public School(string name) 

 { 

  this.Name = name; 
  this.Teachers = new List<Teacher>(); 
  this.Groups = new List<Group>(); 

  this.Students = new List<Student>(); 
 } 
 

 public override string ToString() 
 { 
  StringBuilder schoolAsString = new StringBuilder(); 

  schoolAsString.AppendLine("School name: " + this.Name); 
  schoolAsString.AppendLine("Teachers: " + 
   string.Join(", ", this.Teachers.Select(s => s.Name))); 

  schoolAsString.AppendLine("Students: " + 
   string.Join(", ", this.Students.Select(s => s.Name))); 
  schoolAsString.Append("Groups: " + 

   string.Join(", ", this.Groups.Select(s => s.Name))); 
  foreach (var teacher in this.Teachers) 
  { 

   schoolAsString.Append("\n---\n"); 

   schoolAsString.Append(teacher); 
  } 

  foreach (var group in this.Groups) 
  { 
   schoolAsString.Append("\n---\n"); 

   schoolAsString.Append(group); 
  } 
  foreach (var student in this.Students) 

  { 
   schoolAsString.Append("\n---\n"); 

   schoolAsString.Append(student); 

  } 
  return schoolAsString.ToString(); 



1116  Fundamentals of Computer Programming with C# 

 } 
} 
 

class TestSchool 
{ 
 static void Main() 

 { 
  // Create a few students 
  Student studentPeter = new Student("Peter", "Lee"); 

  Student studentGeorge = new Student("George", "Redwood"); 
  Student studentMaria = new Student("Maria", "Steward"); 

  Student studentMike = new Student("Michael", "Robinson"); 

 
  // Create a group and add a few students to it 
  Group groupEnglish = new Group("English language course"); 

  groupEnglish.Students.Add(studentPeter); 
  groupEnglish.Students.Add(studentMike); 
  groupEnglish.Students.Add(studentMaria); 

  groupEnglish.Students.Add(studentGeorge); 
 
  // Create a group and add a few students to it 

  Group groupJava = new Group("Java Programming course"); 
  groupJava.Students.Add(studentMaria); 
  groupJava.Students.Add(studentPeter); 

 
  // Create a teacher and assign it to few groups 
  Teacher teacherNatasha = new Teacher("Natasha", "Walters"); 

  teacherNatasha.Groups.Add(groupEnglish); 
  teacherNatasha.Groups.Add(groupJava); 
  groupEnglish.Teacher = teacherNatasha; 

  groupJava.Teacher = teacherNatasha; 

 
  // Create another teacher and a group he teaches 

  Teacher teacherSteve = new Teacher("Steve", "Porter"); 
  Group groupHTML = new Group("HTML course"); 
  groupHTML.Students.Add(studentMike); 

  groupHTML.Students.Add(studentMaria); 
  groupHTML.Teacher = teacherSteve; 
  teacherSteve.Groups.Add(groupHTML); 

 
  // Create a school with few students, groups and teachers 

  School school = new School("Saint George High School"); 

  school.Students.Add(studentPeter); 
  school.Students.Add(studentGeorge); 



Chapter 26. Sample Programming Exam – Topic #3  1117 

  school.Students.Add(studentMaria); 
  school.Students.Add(studentMike); 
  school.Groups.Add(groupEnglish); 

  school.Groups.Add(groupJava); 
  school.Groups.Add(groupHTML); 
  school.Teachers.Add(teacherNatasha); 

  school.Teachers.Add(teacherSteve); 
 
  // Modify some of the groups, student and teachers 

  groupEnglish.Name = "Advanced English"; 
  groupEnglish.Students.RemoveAt(0); 

  studentPeter.LastName = "White"; 

  teacherNatasha.LastName = "Hudson"; 
 
  // Print the school 

  Console.WriteLine(school); 
 } 
} 

We will not run performance tests because the task is not of a 

computational nature which requires a fast algorithm. Operations that could 

be slow are deleting of elements from a collection. Creating objects, 

assigning their properties and adding elements to their collections of child 

elements are all fast operations. Only the deletion could be slow. We could 

improve its performance by using HashSet<T> instead of List<T> in all 

aggregations. We leave this to the reader. 

Let’s make just one more note. Why we did not notice the performance 

problem with deleting elements earlier? Let’s recall how we proceeded 
with solving this problem. After thinking about the data structures we had to 

thing about the performance right? Did we do this step? We omitted this step 

and we found the problem too late. The conclusion is: follow the guidelines for 

problem solving. They are very wise. 

Exercises 

1. Write a program, which prints a square spiral matrix beginning from 

the number 1 in the upper right corner and moving clockwise. Examples 

for N=3 and N=4: 

 
4567

314158

213169

1121110

4567

314158

213169

1121110

345

296

187

345

296

187



1118  Fundamentals of Computer Programming with C# 

2. Write a program, which counts the phrases in a text file. Any 

sequence of characters could be given as phrase for counting, even 

sequences containing separators. For instance in the text "I am a student 

in Sofia" the phrases "s", "stu", "a" and "I am" are found respectively 2, 

1, 3 and 1 times. 

3. Model with OOP the file system of a computer running Windows. We 

have devices, directories and files. The devices are for instance floppy 

disk, HDD, CD-ROM, etc. They have a name and a tree of directories and 

files. Each directory has a name, date of last change and list of files and 

directories, which it holds. Each file has a name, date of creation, date of 

last change and content. Each file is placed in one of the directories. Each 

file can be text or binary. Text files contain text (string), and the 

binary ones – sequence of bytes (byte[]). Create a class, which tests 

the other classes and demonstrates how we can build a model for 

devices, directories and files in the computer. 

4. Using the classes from the previous task write a program which takes 

the real file system from your computer and loads it in your 

classes (just the names of the devices, directories and files, without the 

content of the files because you will run out of memory). 

Solutions and Guidelines 

1. The task is analogical to the first task of the sample exam. You can 

modify the sample solution given above. 

2. You may read the text char by char and after each char to append it to 

the current buffer buf and check each of the searched word for a match 

with EndsWith() in the buffer’s end. Of course you cannot use efficiently 

hash-table and you will have a loop for each letter from the text, which is 

not the fastest solution. This is a modification of the “char by char 

algorithm for word counting”. 

Implementing a faster solution needs to adapt the Aho-Corasick 

algorithm. Try to play with it and modify the code from the section 

“Counting Substrings with the Aho-Corasick Algorithm”. 

3. The problem is analogical with the “School” problem from the sample 

exam and it can be solved by using the same approach. Define classes 

Device, Directory, File, ComputerStorage and ComputerStorageTest. 

Think of what properties each of these classes has and what are the 

relationships between the classes. Create a base abstract class File 

and inherit it from TextFile and BinaryFile. Test your code with 

sample hierarchy of devices, files and folders. Note: a file can be listed in 

more than one directory at the same time (unlike in the file system). 

4. Use the class System.IO.Directory and its static methods GetFiles(), 

GetDirectories() and GetLogicalDrives(). Traverse the files system 

using the BFS or DFS graph traversal algorithm. Load partially the 

content of long files (e.g. the first 128 bytes / chars) to save memory. 


